Recombinant Lipase from Gibberella zeae Exhibits Broad Substrate Specificity: A Comparative Study on Emulsified and Monomolecular Substrate
نویسندگان
چکیده
Using the classical emulsified system and the monomolecular film technique, the substrate specificity of recombinant Gibberella zeae lipase (rGZEL) that originates from Gibberella zeae was characterized in detail. Under the emulsified reaction system, both phospholipase and glycolipid hydrolytic activities were observed, except for the predominant lipase activity. The optimum conditions for different activity exhibition were also determined. Compared with its lipase activity, a little higher ratio of glycolipid hydrolytic activity (0.06) than phospholipase activity (0.02) was found. rGZEL preferred medium chain-length triglycerides, while lower activity was found for the longer-chain triglyceride. Using the monomolecular film technique, we found that the preference order of rGZEL to different phospholipids was 1,2-diacyl-sn-glycero-3-phospho-l-serine (PS) > 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (PG) > 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) > l-α-phosphatidylinositol (PI) > cardiolipin (CL) > 3-sn-phosphatidic acid sodium salt (PA) > l-α-phosphatidylethanolamine (PE), while no hydrolytic activity was detected for sphingomyelin (SM). Moreover, rGZEL showed higher galactolipase activity on 1,2-distearoyimonoglactosylglyceride (MGDG). A kinetic study on the stereo- and regioselectivity of rGZEL was also performed by using three pairs of pseudodiglyceride enantiomers (DDGs). rGZEL presented higher preference for distal DDG enantiomers than adjacent ester groups, however, no hydrolytic activity to the sn-2 position of diglyceride analogs was found. Furthermore, rGZEL preferred the R configuration of DDG enantiomers. Molecular docking results were in concordance with in vitro tests.
منابع مشابه
Further biochemical characterization of human pancreatic lipase-related protein 2 expressed in yeast cells.
Recombinant human pancreatic lipase-related protein 2 (rHPLRP2) was produced in the protease A-deficient yeast Pichia pastoris. A major protein with a molecular mass of 50 kDa was purified from the culture medium using SP-Sepharose and Mono Q chromatography. The protein was found to be highly sensitive to the proteolytic cleavage of a peptide bond in the lid domain. The proteolytic cleavage pro...
متن کاملCloning, Expression, and Purification of a GDSL-like Lipase/Acylhydrolase from a Native Lipase-Producing Bacterium, Lactobacillus fermentum
Background: Lipase enzymes are of great importance in various industries. Currently, extensive efforts have been focused on exploring new lipase producer microorganism as well as genetic and protein engineering of available lipases to improve their functional features. Methods: For screening lipase-producing lactobacilli, isolated strains were inoculated onto tributyrin agar plates. Molecular ...
متن کاملThe Role of Highly Conserved Tryptophan in the Sixth Conserved Region at Substrate Specificity of α- amylase
Early in this study, an α-Amylase from Bacillus megaterium WHO (BMW) was isolated from hot springs of Ramsar (North of Iran), and its gene was cloned in E.coli. Based on its conserved sequence regions and substrate specificity, it was classified as intermediary group enzymes with the specificity of oligo-1,6-glucosidase and neopullulanase subfamilies. In the sixth conserved re...
متن کاملConstruction of DNA-shuffled and incrementally truncated libraries by a mutagenic and unidirectional reassembly method: changing from a substrate specificity of phospholipase to that of lipase.
A method of mutagenic and unidirectional reassembly (MURA) that can generate libraries of DNA-shuffled and randomly truncated proteins was developed. The method involved fragmenting the template gene(s) randomly by DNase I and reassembling the small fragments with a unidirectional primer by PCR. The MURA products were treated with T4 DNA polymerase and subsequently with a restriction enzyme who...
متن کاملMultiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris.
The 17 non-universal serine codons (CTG) in the Candida rugosa LIP2 gene have been converted into universal serine codons (TCT) by overlap extension PCR-based multiple site-directed mutagenesis. An active recombinant LIP2 lipase was overexpressed in Pichia pastoris and secreted into the culture medium. The recombinant LIP2 showed distinguishing catalytic activities when compared with recombinan...
متن کامل